

Omega Dot

Research and Engineering Solutions

Coating Wear Testing of Air Foil Bearings to Validate Fuel Cell System Applications

Dr Duc Ha and Alishah Ahmed

March 2023, Issue A

Role of Fuel Cells in Future of Transports

Air Management System for Fuel Cells

Air Compressor

Air Foil Bearings

Challenge for Air Foil Bearings Friction and Wear

PTFE Coating applied to Top Foil

Video - Air foil bearing testing on High-Speed Spindle

Air foil bearing testing on High-Speed Spindle

Bearing life requirements from OEM Manufacturers

Compressor Size (kW)	Required Start-stop cycles	Application	Sector
15 kW	75,000	Air Compressor	Aerospace
14 kW	200,000	Air Compressor	Automotive
250 kW	4,000	Micro Gas Turbine	Power Generation
10 kW	250,000	Air compressor	Automotive
N/D	5,000	Compressor	Aerospace
N/D	20	Engine	Aerospace

Difficulties of Air Foil Bearings from OEM

"... hereby we provide you the picture of our old air bearings that worked 450 start-stop cycles.... most of them cannot be used after 700 cycles."

"... indeed it's an old one which probably suffered... We were also surprised by this virtual absence of bumps and also the clearance seemed to us really tight...."

Radial Air Foil Bearing Testing Objective

Cyclic testing of radial bearing
Work package lead by Omega Dot

Radial Bearing Omega Dot Cyclic Test Rig Design

Radial Bearing Omega Dot Data Set Up

Radial Bearing Automated Cyclic Testing

Video Radial Bearing Cyclic Testing

Radial Bearing Coating Combinations Selection

EN24T Shaft – to be coated
Teflon (PTFE) on Foils

Coating Options on the Shaft

Company	Coating	Thickness (microns)	Dynamic COF	Hardness (HV)	Unit Price
Wallwork	Titanium Nitride	1-4	0.3	2300	£19
	SLF, WS2 (alternative to	0.5	0.02	0	625
	CrN (Chromium Nitride)	1-4	0.45	2300	£19
	Nitron IVIC	1-4	<0.1	1200	£24
Jackson Plating	litanium Nitride				
	Hard Chrome	2.4	0.5	2222	
Teer Coatings	Titanium Nitride	2-4	0.5	2200	£111
	MoST	1-2	0.05	1400	£111
	CrN (Chromium Nitride) Graphit-iC (DLC)	2-4 2-4	0.3 0.08	2200 1500	£20 £111
Carter Bearing	Titanium Nitride	1-4	0.3	2300	£52
	MoS2 (Molybdenum Disulphide) (DLC)	< 0.1	0.16	0	£52
Techniplant	Hard Chrome			1245	
	Crionising Chrome			2300	
	Eas-i-dure				

Coating Options

- High wear, high abrasion and high oxidation resistance
- 2-4 microns thick
- 2200 (HV 0.05)
- ©0.3 coefficient of friction

Patented MoS2, metal solid lubricant coating 1-2 microns thick 1400 (HV 0.05) 0.05 coefficient of friction

Hardness, COF and Cost Comparison for Coatings of Moderate Hardness and Low COF

■ HV ■ Unit Price ■ Dynamic COF

Nitron MC

Hard tungsten carbide particles in a soft amorphous carbon matrix

- 1-4 microns thick
- 1200 VPN

0.1 coefficient of friction

Hardness, COF and Cost Comparison for Coatings of Moderate Hardness and Low COF

HV Unit Price Dvnamic COF

PTFE VS Uncoated EN24T Running-in Period

Results from one full cycle

0.03 24000 0.025 19000 0.02 Speed (rpm) Torque (Nm) 0.015 14000 0.01 man mahn 0.005 9000 Frictions (N) at Various Cycle Stages 0 4000 -0.005 -1000 -0.01 0.700 0 500 1000 1500 2000 2500 3000 Time (cs) 0.600 - Speed (rpm) — Friction (Nm) 0.500 Frictions (N) 0.400 0.300 0.200 0.100 0.000 2000 2500 0 500 1000 1500 3000 3500 Number Cycles • Friction @ Orpm (N) Friction @ Shutdown (N) Friction @ 24,000rpm (N)

Stage 1 – Cyclic Testing to 10k cycles Comparison

Shaft Coating	Shaft	Foil	Microscopic
Uncoated EN24 T			
CrN			
MoST			
Nitron-MC			

© Omega Dot Ltd

Stage 2 – Testing to 250k cycles Uncoated EN24T vs Teflon

10k (41 hrs)

250k cycles (43 days)

Stage 2 – Testing to 250k cycles CrN Coating vs Teflon

250k cycles (43 days)

Thrust Air Foil Bearing Testing

- Friction and wear testing on thrust bearing configuration.
- Work package lead by NPL.

© Omega Dot Ltd

Thrust Bearing Testing Continuous Run

- Continuous contact testing on thrust bearing for 9 days (250k cycles)
- Measuring friction, temperature and displacement

Images from NPL, Continuous Testing Rig Set Up

Thrust Bearing NPL Continuous Contact Testing

Thrust Bearing NPL Disc-on-Disc Test Rig

Video NPL Disc-on-Disc Test Rig

Friction vs Speed Test No Aerodynamic lift confirmation

Thrust Bearing Test at 1,300 rpm Uncoated EN24 T vs Teflon

Load and Frictional Force

Temperatures

Thrust Bearing Friction Results @ 1,300 rpm **Coating Comparison over 6 days**

Friction drops after running

Friction vs Time: TB02 vs Uncoated Steel

The friction against CrN is generally higher and less variable

Thrust Bearing Outcome Coating Comparison over 6 days

Modelling of Thrust Bearing

Thrust Bearing Stiffness Measurement

Modified instrumented scratch tester to determine displacement vs load

Thrust Bearing Stiffness Measurement

NATIONAL Physical Laboratory

Thrust Bearing Stiffness Measurement

© Omega Dot Ltd

Conclusion

- Most air foil bearings has Teflon (PTFE) coatings on the top foils to improve the friction and wear resistance during start-stop cycles. Mainly because its soft, compliant and low cost.
- Bearing counter face, either shaft or disc runner is generally hard material and can be enhanced with coating.
- Our tests shows our radial air foil bearings can exceed 250,000 start-stop cycles.
- Cyclic test results showed the great majority of the bearing wear activity occurred within the first 5,000 cycles, and localised at the trailing edge of the bearing
- Our results showed CrN to be a good coating choice on the counter-face material

Conclusion

- Their results also suggests running-in within the first 100 hours, where the coefficient of friction drops from 0.3 to ~0.15.
- Wear on the top foils also shown to be localised at the trailing edge.
- Their results showed our thrust bearing can exceed continuous rubbing of 6 days, simulating 167k cycles.

Acknowledgements

